Overview of the Energy & Environmental Research Center's Proposed Bakken Production Optimization Program

NDIC - OGRC January, 2013

John Harju

Bakken Production Optimization Program

A public—private partnership to optimize oil and gas activities and improve the efficiency of operation.

- Tasks executed within the program will be funded by the commercial partners with matching funds from NDIC-OGRC
- Activities directed by the commercial partners, with technical support from the EERC
 - Laboratory, pilot, and field-based
- Results of the project communicated to NDIC-OGRC and other program sponsors
- Proposing ~\$1,000,000/yr for three years from NDIC.
 Requesting ~\$200,000/yr from multiple industry partners

Bakken Production Optimization Program (Cont.)

- Focus areas to be addressed within this proposed program will be developed in collaboration with partners. Preliminarily, the EERC has suggested the following four broad categories:
 - Hydrocarbon utilization
 - ♦ Bi-fuel operation of drilling rigs, hydraulic fracture operations
 - Associated gas use for site operations
 - Water management
 - ♦ Water treatment, recycle, and reuse technologies
 - Site logistics
 - Evaluation of equipment siting and workflow at multi-operation and/or multi-well locations
 - Site construction materials
 - ♦ Environmental challenges
 - Process optimization and systems analysis
 - Investigation of sources of well failure and development of mitigation strategies
 - ♦ Standardization of wellsite design to increase efficiency & reduce cost
 - Emission characterization & testing

Program Goal

- Explore wellsite optimization approaches that have potential to
 - Reduce wellsite costs
 - Improve wellsite production
 - Reduce wellsite development and operation impacts to surrounding land owners
 - Decrease demands on surrounding infrastructure and water sources

Possible Examples of Program Tasks

- Specific tasks will be defined/refined by industry partners and OGRC, but might include tasks such as:
 - Combined NGL recovery and natural gas utilization on-site for power
 - On-site wastewater and hydraulic fracturing fluid recycling to minimize transportation and disposal costs
 - Drilling, workover, and completion rig repowering to enable utilization of associated gas available on-site or nearby
 - Wellsite opportunities that integrate power- and water-related aspects during drilling / workover / completion activities, water transport and utilization, and fuel utilization to achieve cost containment (= max economic output)
 - Means of improving handling/disposal efficiency for drilling and production wastes, including naturally occurring radioactive materials (NORM)
 - Any optimizations that result in a net reduction of truck traffic in and out of the wellsite

Anticipated Results

Environmental

- Less truck traffic
 - Decreased diesel emissions
 - Decreased road damage and subsequent maintenance
 - Decreased road dust
 - Decreased incidence of spills
- Less wastewater production and reduced demand for freshwater supplies
- Less flaring/reduced emissions from flares
- Potential for smaller well pads

Economic

- Increased royalties and tax base from oil, harnessed associated gas and NGL streams
- Increased profits from added product streams, engaged earlier in the well life cycle
- Decreased road maintenance costs
- Decreased costs for water and wastewater hauling and disposal

Industrial Partners to Date

- Committed at Time of Proposal Submittal
 - Marathon Oil
 - Whiting
 - Continental
- Near-Term Commitment Possible from Other Partners
 - Halcón
 - Hess
 - Oxy
 - XTO
 - Oasis
 - Statoil

Program Schedule

Program 3-Year Budget

	NDIC		Industry		Total	
Project Associated Expense	Share		Share		Program	
Total Labor	\$ 2,433,292	\$	2,498,342	\$	4,931,634	
Travel	\$ 104,522	\$	237,590	\$	342,112	
Supplies	\$ 179,545	\$	191,200	\$	370,745	
Communication	\$ 4,349	\$	2,957	\$	7,306	
Printing & Duplicating	\$ 8,940	\$	8,640	\$	17,580	
Food	\$ 7,599	\$	8,640	\$	16,239	
Operating Fees & Svcs						
Natural Materials Analytical Res. Lab.	\$ 109,145	\$	-	\$	109,145	
Analytical Research Laboratory	\$ 7,155	\$	-	\$	7,155	
Particulate Analysis	\$ 39,421	\$	-	\$	39,421	
Graphics Support	\$ 24,165	\$	25,949	\$	50,114	
Shop and Operations Support	\$ 37,271	\$	26,682	\$	63,953	
Remote Sampling Trailer	\$ 44,596	\$	-	\$	44,596	
Total Project Cost	\$ 3,000,000	\$	3,000,000	\$	6,000,000	

Backup Slides

EERC's Oil- and Gas-Related Experience and Capabilities

State-of-the-Art Facilities

More than 245,000 square feet of state-of-the art laboratory, demonstration, and office space.

EERC Engineering Capabilities

- The EERC has dedicated staff to carry mechanical and chemical process designs from conception through fabrication and installation.
 - Multiskilled, matrixed engineering and science staff
 - Instrumentation and automation specialists
 - Process design group
 - Mechanical design group
 - Fabrication shop
 - Quality assurance/quality control personnel
 - Skilled technician/operator staff

AGL Equipment

- Optical profilometer
- +20-ton universal compression frame
- Flexible-wall permeameter
- Hoek-style triaxial and core-flood cells
- Scanning electron microscopy (SEM)
- Supergamma spectrometer
- GC-MS
- Thermal dilatometer
- Ion chromatographer
- X-ray diffraction (XRD) and x-ray fluorescence (XRF)
- Helium porosimeter
- Petrographic microscope

Proppant Embedment and Penetration Testing

Modeling and Simulation

Modeling Capabilities

- Log and well test normalization and interpretation
- Petrophysical analysis
- Property modeling, including facies modeling using multiple-point statistics
- Fluid modeling and equation-of-state calibration
- Numerical simulation, including history matching and prediction

Dickinson Lodgepole Mounds

Monitoring and Characterization Well Real-Time Data for Bell Creek Oil Field

Environmental Experience

Soil Gas Field Analyses

 Near active wells, and between active wells (interspaced)

RAE Systems PGM-54 Handheld Multigas Analyzer

CO₂, total VOCs, O₂, H₂S

 Near plugged and abandoned (P&A) wells (three-spot)

Soil Remediation

- Complete removal of amines after 200 days of operation.
- Other parameters were below regulatory limits after 300 days of operation.
 - EERC
 Energy & Environmental Research Center®
 Putting Research into Practice

- Joint industry—government-funded programs.
- Remediation of soils impacted by hydrocarbons and gas-processing constituents.

Innovative Management of Produced Water and Frac Fluids

Produced brine is suitable (ideal) for use in deep (>2200 ft) drilling applications.

Treated water is suitable for use in surface and near-surface (<2200 ft) drilling applications.

In some states, treated water can be used for stock-watering and/or irrigation.

Freeze-Thaw Evaporation (FTE®) facility at Jonah Gas Field, Wyoming.

Joint industry—government-funded project.

Project Experience

Gas/Diesel-Powered Drilling Rig Project Overview

- Tested dual-fuel operation of a Caterpillar 3512 engine at the EERC using simulated rich gas.
 - Butler Machine supplied Caterpillar 3512 engine.
 - Simulated rich-gas mixture produced using bottled/tank-delivered industrial gases and EERCfabricated gas-metering system.
 - GTI Bi-Fuel[®] system used to supply gas to engine.
 - Monitored engine performance and emissions over a range of operating conditions and fuel mixtures.
- Field demonstration of gas-powered drilling operations using rich Bakken gas.
 - Two wells drilled using GTI Bi-Fuel system and rich wellhead gas from nearby well.
 - Monitored engine performance, gaseous and diesel fuel use, and emissions.

Rich-Gas Test Results

- Simulated rich-gas tests at the EERC
 - Tests completed June 2012; report summarizing results submitted to North Dakota Industrial Commission (NDIC).
 - Diesel replacement rates of greater than 40% can be achieved, and the GTI Bi-Fuel system can control fuel use to ensure safe engine operation.
 - Matching engine load with diesel replacement rate is important to prevent poor fuel utilization and to minimize unburned hydrocarbon emissions.
- Field testing of gas-powered drilling operations
 - GTI Bi-Fuel system was operated August–September.
 - The EERC installed a data acquisition system to enable realtime continuous monitoring and logging of engine performance; provided on-site technical support throughout field test.
 - Data analysis and reporting are ongoing; final report will be submitted to NDIC in late 2012.
 - Demonstrated efficient, economical use of wellhead gas; vendor claimed savings of >\$3000/day.

Associated Gas Use Study

- Study goal: to evaluate technologies capable of utilizing associated gas upstream of natural gas-processing plants
 - Natural gas liquids recovery
 - Compressed natural gas for vehicle fuels
 - Electrical power generation
 - Chemical production
- Broad contribution from a wide variety of stakeholders
- Study submitted to NDIC July 2012
- Webinar tentatively scheduled November 5, 2012
 - https://www.dmr.nd.gov/pipeline/

Low-Btu Gas Utilization

Low-Btu Gas Utilization: Thermal Application

Power Generation

Bakken CO₂ EOR Project Goals

- To predict the performance of CO₂ EOR in the Bakken using lab experiments coupled with modeling.
 - Quantify phase behavior and fluid properties under reservoir conditions.
 - Compare different Bakken reservoir types.
 - Lab analyses include:
 - Detailed analyses of Bakken reservoir rocks.
 - ◆ Effects of CO₂ on key oil properties.
 - Modeling activities will:
 - ♦ Generate geologic reservoir models.
 - ♦ Conduct dynamic simulation modeling.

Recent Bakken Work – Benchmarking Proppants, Stimulation Methods, and Frac Fluids

Proppants (ceramic vs. sand)

Stimulation Methods (sliding sleeves vs. plug and perf vs. combo

Frac fluid types (diesel-based vs. water-based)

Bakken Water Opportunities Assessment

Goals

- Evaluate feasibility of recycling frac flowback waters.
- Assess technical and economic feasibility of upgrading nonpotable groundwater for use in fracs.

Outcomes:

- Frac flowback quantity and quality data collected from 89 wells, representing five producers.
- Because of low initial flowback water recovery rates and extremely high dissolved salt content, recycling of Bakken frac flowback water is challenging.
- A pilot project using reverse osmosis (RO) to treat brackish groundwater was conducted.
- If access to freshwater sources is limited,
 RO treatment may be economically feasible.

Contact Information

Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

World Wide Web: www.undeerc.org Telephone No. (701) 777-5000 Fax No. (701) 777-5181

John Harju, Associate Director, jharju@undeerc.org

